или Зарегистрироваться

8-913-532-77-14

Информационно-консультационный центр для студентов

Готовые работыМатематические дисциплины

Контрольная работа: Теория вероятностей и математическая статистика. Вариант 4 1. Зенитная батарея, состоящая из 5 орудий, производит залп по группе, состоящей из 3 самолетов. Каждое из орудий выбирает себе цель наудачу независимо от остальных. Найти вероятность того, что все орудия выстрелят по одному и тому же самолету. 2. Вероятность боя стеклянной тары при погрузке на автомашины равна 0,06, а при транспортировке – 0,05. Какова вероятность боя стеклянной тары? 3. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответстве

2015

Важно! При покупке готовой работы
сообщайте Администратору код работы:

009-11-15

приблизительное количество страниц: 9



Соглашение

* Готовая работа (дипломная, контрольная, курсовая, реферат, отчет по практике) – это выполненная ранее на заказ для другого студента и успешно защищенная работа. Как правило, в нее внесены все необходимые коррективы.
* В разделе "Готовые Работы" размещены только работы, сделанные нашими Авторами.
* Всем нашим Клиентам работы выдаются в электронном варианте.
* Работы, купленные в этом разделе, не дорабатываются и деньги за них не возвращаются.
* Работа продается целиком; отдельные задачи или главы из работы не вычленяются.

Цена: 250 р.


Скачать методичку, по которой делалось это задание (0 кб)

Содержание

Вариант 4

1. Зенитная батарея, состоящая из 5 орудий, производит залп по группе, состоящей из 3 самолетов. Каждое из орудий выбирает себе цель наудачу независимо от остальных. Найти вероятность того, что все орудия выстрелят по одному и тому же самолету.

2. Вероятность боя стеклянной тары при погрузке на автомашины равна 0,06, а при транспортировке – 0,05. Какова вероятность боя стеклянной тары?

 3. Имеются три партии деталей по 20 деталей в каждой. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 20, 15, 10. Из наудачу выбранной партии случайным образом извлечена деталь, оказавшаяся стандартной. Деталь возвращают в партию и вторично из той же партии наудачу извлекают деталь, которая также оказывается стандартной. Найти вероятность того, что детали были извлечены из третьей партии.

4. Решить задачи, используя формулу Бернулли и теоремы Муавра-Лапласа.

а) Найти вероятность того, что при 4 испытаниях событие наступит ровно 2 раза, если вероятность его появления в каждом испытании равна 0,2. б) Вероятность попадания в цель при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена: 1) ровно 85 раз; 2) не менее 70 и не более 80 раз.

 5.Дискретная случайная величинаХ имеет только два возможных значения: x1 и x2, причем x1 < x2. Вероятность того, что Х примет значение x1 равно 0,4. Найти закон распределения Х, зная математическое ожидание М[X] = 0,4 и дисперсию D[X] = 3,84.

6. Непрерывная случайная величина Х задана функцией распределения

 7. Известны математическое ожидание а=5 и среднее квадратичное отклонение s=5 нормально распределенной случайной величины Х. Найти вероятность: а) попадания этой величины в заданный интервал (2, 6); б) отклонения этой величины от математического ожидания не более, чем на δ=4.

 8. Из генеральной совокупности извлечена выборка, которая представлена в виде интервального вариационного ряда. а) Предполагая, что генеральная совокупность имеет нормальное распределение, построить доверительный интервал для математического ожидания с доверительной вероятностью γ=0,95. б) Вычислить коэффициенты асимметрии и эксцесса, используя упрощенный метод вычислений, и сделать соответствующие предположения о виде функции распределения генеральной совокупности. в) Используя критерий Пирсона, проверить гипотезу о нормальности распределения генеральной совокупности при уровне значимости α=0,05.

9. Методом наименьших квадратов подобрать функцию  по табличным данным и сделать чертеж.

 

 

 





Цена: 250 р.


Все темы готовых работ →

Другие готовые работы по теме «математические дисциплины»